

Study of pH Effect on Acetaldehyde-Ammonia Reaction

Lonza

E. Moioli^{1,2}, S. Aghalale^{1,2}, L. Schmid², F. Enzenberger¹, P. Wasserscheid¹, H. Freund¹

¹Lehrstuhl für Chemische Reaktionstechnik, Friederich-Alexander-Universität Erlangen-Nürnberg, D

²Research on Special Ingredients, Lonza Ltd., Visp, CH

Scope of the research

- ➤ First principle determination of products of acetaldehyde-ammonia reaction at various pH
- Dependence of reaction products on acid type
- Possibility to adapt the reaction to pH requirements of the consecutive reactions

Experimental setup

- Slow addition of acetaldehyde to ammonium salt solution in excess of ammonia/acid
- 1:1 stoichiometric ratio acetaldehydeammonia.

Results

- Basic conditions: In all acids trimer is formed quantitatively
- Neutral conditions: Low concentration of trimer
 - In acetic acid 100 % polymer
 - In oxalic and hydrochloric acid predominant presence of unreacted acetaldehyde
- Acid conditions:
 Acetic acid: prevalence of polymer
 - Oxalic acid: equal amounts of trimer and acetaldehyde, low polymer
 - Hydrochloric acid: equal amounts of polymer and acetaldehyde, low trimer

Conclusions

- No influence of acid type at high pH
- Neutral pH does not allow trimer formation with every acid
- In large excess of acid, the acid structure plays a major role in stabilizing the trimer
- It is possible to avoid polymer formation and to preserve the carbon source in oxalic acid if low pH is required by following operations

